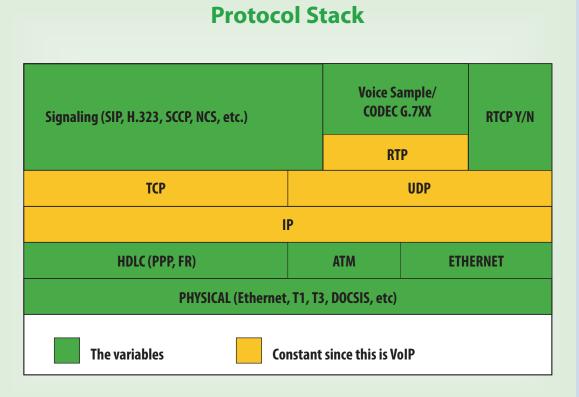

Voice Over IP (VoIP) Technology Reference Chart

Provider Hosted VoIP Service "IP Centrex"


The Communications Test & Measurement Segment of JDSU

(2) DA-3400

A 7-layer network analyzer for VoIP and Data network monitoring and troubleshooting. The DA-3400 is ideal for VoIP call guality monitoring, signaling analysis, and problem identification and isolation.

③ **PVA-1000**

The HST-3000 emulates IP phones, validates VoIP connectivity, feature

availability, and end-user voice guality

Voice Encoding Example: G.729 ample = 10 ms Voice IP-UDP-RTP 2x Samples Analog Signal Samples per Packet Buffer Samples CODEC Bandwidth IP Bandwidth IP Bandwidth **NO Silence Suppression 30% Silence Suppression** G.711 PCM 64 Kbps 80 Kbps 56 Kbps G.729 CS-ACELP 8 Kbps 24 Kbps 16.8 Kbps 16.27 Kbps 11.39 Kbps G.723.1 ACELP 5.6 Kbps G.723.1 MP-MLQ 17.07 Kbps 6.4 Kbps 11.95 Kbps 32 Kbps 40 Kbps 29 Kbps G.726

Real-Time Protocol (RTP)

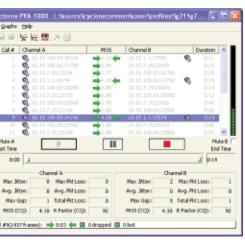
		0	1 V	2	3 P	4 X	5	6 7 Count	0cte			
Defined in R	FC 3550 and 3551	м	V			ad Typ		Count	2			
Used by H.323, SIP, MGCP/NCS, MEGACO, and PacketCable			Sequence Number									
					· ·	Stam			4			
Transports re	eal-time voice and video content				S	SRC			5			
					-	SRC			6			
					RTP S	tructu	re					
٧	This stands for version. It identifies the RTP version.											
Р	This stands for padding. When set, the packet contains one or more	additio	nal p	addin	g octe	ts at th	ie end.					
	Padding octets are not part of the payload.											
Х	This stands for extension bit. When set, the fixed header is followed by exact	ly one hea	adere	extensi	ion wit	hadefi	ned forma	at.				
CSRC Count	This contains the number of CSRC identifiers that follow the fixed	header.										
М	This stands for marker. The interpretation of the marker is defined	d by a pr	ofile	. It is	intenc	led to	allow					
	for significant events, such as frame boundaries, to be marked in	the pacl	ket s	tream								
Payload Type	This identifies the format of the RTP payload (G.729, G.711, etc.)	and dete	ermiı	nes its	inter	pretati	on by th	e				
	application. A profile specifies a default static mapping of payload	d type co	odes	to pa	yload	forma	ts.					
	Additional payload type codes may be defined dynamically throu	2										
Sequence	This increments by one for each RTP data packet sent. It may may	be used	d by	the re	ceiver	to det	ect pack	et				
Number	loss and to restore packet sequence.											
Time Stamp	This reflects the sampling instant of the first octet in the RTP data	•			-							
	derived from a clock that increments monotonically and linearly in time to allow for synchronization											
	accuracy and for measuring packet arrival jitter.											
SSRC	This identifies the synchronization source. The identifier is choser		•				t no two					
	synchronization sources within the same RTP session will have the			iden	tifiers							
CSRC	This identifies the contributing sources for the payload contained in	this pack	et.									

Compressed RTP (CRTP)

CRTP greatly reduces the overhead for Voice applications over slow links.

• Compresses the IP/UDP/RTP header in a RTP data packet from 40 bytes to approximately 2 to 5 bytes.

• RTP header compression is supported in point-to-point networks (FR, HDLC, PPP, etc.)


Before RTP Header Compression:

To learn more, visit www.jdsu.com/voip

Enterprise VoIP to the Desktop

Enterprise VoIP "Toll Bypass Model"

An enterprise and service support software tool for IP telephony problem capture and analysis. PVA-1000 software provides full analysis of VoIP telephone calls, including jitter, packet loss, and audio playback.

Signaling

(4) **DSAM**

A handheld CATV service and installation meter for VoIP verification and troubleshooting over coax cables. DSAM contains an eMTA and allows for efficient "find and fix" capabilities of both IP and FR issues in an HFC network.

S OPERA - Voice Quality Analysis

Quality Impairments (Transport-Related)

A voice and audio quality analyzer for end-to-end quality testing over any VoIP network, OPERA, measuring to ITU-T standards, objectively evaluates and ensures the quality of compressed speech (P.862 PESQ) and wideband audio signals (BS.1387 PEAO).

	5 5
1.323	
ITU-T H.225	Call control signaling for multimedia systems
ITU-T H.235	Security and encryption for H-series terminals
ITU-T H.245	Media transport channel setup and control
ITU-T H.450	H.323 supplemental services
ITU-T T.38	Real-time fax over IP
IETF RFC 3550	RTP for media transport over IP
IP	
IETF RFC 3261	Session Initiation Protocol
IETF RFC 3550	RTP for media transport over IP
AGCP	
IETF RFC 3435	Media Gateway Control Protocol
IETF RFC 3550	RTP for media transport over IP
PacketCable	
NCS	Network-Based Call Signaling protocol
IETF RFC 3550	RTP for media transport over IP
NEGACO/H.248	
ITU-T H.248	H.248 joining of IETF and ITU-T VoIP signaling standards
IETF RFC 3525	MEGACO joining of IETF and ITU-T VoIP signaling standards
IETF RFC 3550	Real-time multimedia encapsulation over IP
Proprietary	
	iontrol Protocol (SCCP)
Nortel UniStim	
Avaya custom H.323	

OPERA and PVA-1000)

- PESQ PAMS

(6) T-BERD[®]/MTS-4000

A handheld platform designed for installation and troubleshooting of Access/FTTx networks and Triple-Play services. The layered approach of the GUI simplifies service acceptance and troubleshooting.

(7) SmartClass Triple Play Service (TPS), **ADSL, and Ethernet Testers**

SmartClass handheld test tools that combine intelligence, power, and portability required to deliver triple-play services. Economical, yet easy-to-use handheld point solutions suitable for tier-1 field technicians.

Service Installation/Turn-up

Equipment and/or Network Design Verification Equipment manufacturers test their products for full functionality, performance under load, regression, and conformance to specifications. Providers and Enterprises implementing VoIP should repeat many of the same tests in their specific environment before adding or upgrading equipment. Test equipment requirements for this phase include conformance testers, load generators, voice quality analyzers, and protocol analyzers. (Products: DA-3400, Opticom

Service Troubleshooting

If the VoIP service is inoperable, intermittent, or degraded, identify the root cause before taking corrective action. Tools for troubleshooting vary widely with the nature and architecture of the VoIP Network, but they can include fixed or portable, passive or active test systems, and dispatchless software. Functionality should include VoIP end-point emulation, call capture, playback, and QoS scoring via MOS. (Products: DA-3400, DSAM, HST-3000, T-BERD/MTS-4000, and PVA-1000)

Test Methodologies - Signal Degradation Analysis

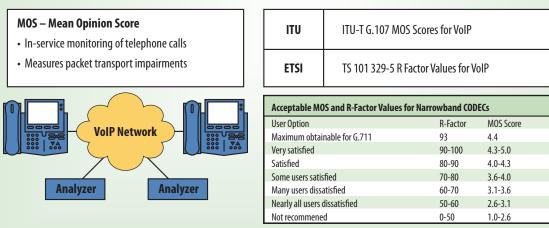
Signal Degradation Analysis This out-of-service (objective) test evaluates distortion across all network segments from end to end • Receiver compares received sample against known original sample Complex signal analysis identifies network induced distortion • PESQ MOS quality scale from 1 (lowest) to 4.5 (highest) PESQ P.862 Perceptual Evaluation of Speech (Digital) Uses pre-recorded voice samples PAMS • No network monitoring capability P.861 Perceptual Analysis and Measurement System (Analog) Pre-recorded Sampl **VoIP** Network

Network Audit/VoIP Pre-Assessment

Before adding VoIP as an application on an existing LAN/WAN infrastructure, evaluate the network for readiness via a detailed baseline and through an active simulation of the deployed VoIP service. Test equipment requirements include network discovery and mapping tools, protocol analysis for statistics collection, and distributed software or hardware VoIP agents for generation and measurement of VoIP performance. (Products: DA-3400, HST-3000, T-BERD/MTS-4000, and PVA-1000)

Performance Monitoring

Larger deployments with stringent service expectations warrant a distributed, passive analysis system to monitor and alarm on various performance thresholds. Some of these requirements may be met by monitoring functions in the VoIP equipment itself, but they are often augmented by purpose-built peripherals and software that integrate with operations support systems (OSS) used by the network operations center (NOC). (Products: DA-3400)

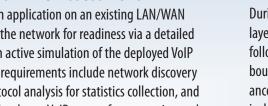

HST-3000)

Test Methodologies - Packet Transport Analysis

Packet Transport Analysis

This in-service (subjective) test computes the impact of packet transport problems on call quality

- Measures jitter, packet loss, and latency
- Focuses on monitoring and troubleshooting of customer problems
- MOS quality scale from 1 (lowest) to 5 (highest)
- R-Factor values from 0 (lowest) to 100 (highest)



VoIP Test Phases

Receive

During service installation, the underlying physical and datalink layers should be fully tested for any marginal performance issues followed by a test of the VoIP service itself. Perform inbound, outbound, on-net and off-net calls to verify provisioning and performance across the IP/PSTN boundaries. Test equipment requirements include software-based or handheld portable tools suitable for the field technician. (Products: DSAM, T-BERD/MTS-4000, and

